Assessment Schedule – 2008-

Calculus: Manipulate real and complex numbers, and solve equations (90638)

Evidence Statement

	Achievement Criteria	Q.	Evidence	Code	Judgement	Sufficiency
Achievement	Manipulate real and complex numbers, and solve equations.	ONE	$\frac{-18}{13} - \frac{11\sqrt{3}}{13}$	A1	Or equivalent. Decimal to 3sf	Achievement: Four of Code A
		TWO (a)	<i>x</i> = 1.5	A2	Exact answer required.	including at least One of
		(b)	$x = -\frac{p}{3}$	A2	Exact answer required.	Code A1 and One of
		THREE (a)(i)	-7+11i	A1	Or equivalent.	Code A2.
		(a)(ii)	$\frac{-2}{5} - \frac{i}{5}$	A1	Or equivalent.	
		(b)	$2cis\frac{\pi}{2}$ or $2i$	A1	Or equivalent. Accept if argument not simplified but must have zero real component.	

	Achievement Criteria	Q.	Evidence	Code	Judgement	Sufficiency
srit	Solve more complicated equations.	FOUR	$\ln \frac{(3x-2)}{(x+3)} = \ln k^2$ $\frac{3x-2}{x+3} = k^2$ $3x-2 = k^2 x + 3k^2$ $x(3-k^2) = 3k^2 + 2$ $x = \frac{3k^2+2}{3-k^2}$	A1 (A2) M	Alternatives: $x = \frac{-11}{k^2 - 3} - 3$ or $x = \frac{11}{3 - k^2} - 3$	Merit: Achievement plus Two of Code M OR
Achievement with M		FIVE	$z^{3} - pz^{2}qz - r = 0$ $(z - (2 + 3i))(z - (2 - 3i))(z - \alpha) = 0$ Multiplying constants: $(2 + 3i)(2 - 3i)(\alpha) = r$ $13\alpha = r$ $\therefore \alpha = \frac{r}{13}$ Or, equating coefficients: $p(z) = z3 - (\alpha + 4)z^{2} + (4\alpha + 13)z - 13\alpha$ $-13\alpha = -r$ (1) $(\alpha + 4) = p$ (2) $4\alpha + 13 = q$ (3) $\therefore \alpha = \frac{r}{13} \text{ or } \alpha = p - 4$	A1 (A2) M	Multiplication of conjugates. $(z^2 - 4z + 13)$ or -5-12i and $-46-9iAlso accept:\alpha = \frac{q-13}{4}mei$	Three of Code M.

NCEA Level 3 Calculus (90638) 2006 — page 3 of 4

	Achievement Criteria	No.	Evidence	Code	Judgement	Sufficiency
	Criteria Solve problem(s) involving real or complex numbers.	SIX	$\sqrt{\frac{A.H}{2}}$ $= \sqrt{\frac{(x+y)}{4} \cdot \frac{2}{\frac{1}{x} + \frac{1}{y}}}$ $= \sqrt{\frac{(x+y)}{4} \cdot \frac{2xy}{(x+y)}}$ $= \sqrt{\frac{xy}{2}}$ so, $LHS = \sqrt{\frac{AH}{2}} - \sqrt{2}G + \frac{G}{\sqrt{2}}$ $= \frac{\sqrt{xy}}{\sqrt{2}} - \sqrt{2}\sqrt{xy} + \frac{\sqrt{xy}}{\sqrt{2}}$ $= \frac{2\sqrt{xy}}{\sqrt{2}} - \frac{2\sqrt{xy}}{\sqrt{2}}$ $= 0$ $= RHS \qquad QED$	(A1) M (M) E	Error in logic, with correct algebra gets M_L	Excellence: Merit plus code E OR Two of code E.
Achievement with Excellenc		SEVEN (a)	$z^{3} = w$ $z^{3} = wcis(0 + 2n\pi) or z^{3} = wcis(\pi + 2n\pi)$ $z_{1} = w^{\frac{1}{3}}cis(0) \qquad z_{1} = w^{\frac{1}{3}}cis(\frac{\pi}{3})$ $z_{2} = w^{\frac{1}{3}}cis(\frac{2\pi}{3}) \qquad z_{2} = w^{\frac{1}{3}}cis(\pi)$ $z_{3} = w^{\frac{1}{3}}cis(\frac{4\pi}{3}) \qquad z_{3} = w^{\frac{1}{3}}cis(\frac{5\pi}{3})$	A1 (A2) M	Or equivalent. Conversion to polar form. Must show 3 correct solutions. Accept positive or negative angles. Accept angle in degrees.	
		(b)	$z^{k} = w$ $z^{k} = wcis(2n\pi), with \ k \ solutions$ $z_{1} = w^{\frac{1}{k}}cis(0)$ $z_{2} = w^{\frac{1}{k}}cis(\frac{2\pi}{k})$ $z_{3} = w^{\frac{1}{k}}cis(\frac{4\pi}{k})$ $z_{k} = w^{\frac{1}{k}}cis(\frac{2(n-1)\pi}{k})$ Geometric sequence, $r = cis(\frac{2\pi}{k})$ Sum $= \frac{zI(r^{k}-I)}{r-I}$ but $r^{k} = cis(2\pi) = I$ Hence sum $= 0$	M	Or equivalent.	

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence	
Manipulate real and complex numbers, and solve equations.	Solve more complicated equations.	Solve problem(s) involving real or complex numbers.	
$4 \times A$ including at least $1 \times A1$ and	Achievement plus $2 \times M$	Achievement with Merit plus $1 \times E$	
1 × A2	OR	OR	
	$3 \times M$	2 × E	

The following Mathematics specific marking conventions may also have been used when marking this paper:

- Errors are circled.
- Omissions are indicated by a caret (Λ) .
- NS may have been used when there was not sufficient evidence to award a grade.
- CON may have been used to indicate 'consistency' where an answer is obtained using a prior, but incorrect answer and NC if the answer is not consistent with wrong working.
- CAO is used when the 'correct answer only' is given and the assessment schedule indicates that more evidence was required.
- M_L indicates a logic error and the highest grade possible is an M as a result.
- **RAWW** indicates right answer, wrong working.
- **R** for 'rounding error' and **PR** for 'premature rounding' resulting in a significant round-off error in the answer (if the question required evidence for rounding).
- U for incorrect or omitted units (if the question required evidence for units).
- MEI may have been used to indicate where a minor error has been made and ignored.
- IMS indicates an incorrect mathematical statement.